Identification and Ranking of Key Success Factors in Knowledge Management Using Fuzzy Analytical Hierarchy Process (FAHP)
(Case Study: Supervisor of Saderat Bank of Golestan Province)

Tamara Ramezani, Hossein Didekhani

Department of Management, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran

*Corresponding Author Email: H.didekhani@gmail.com

Abstract

The present study aims at identifying and ranking the effective factors on successful establishment of knowledge based systems in Saderat bank of Golestan province. Decision making team includes directors, deputies and experts in supervision of Saderat Bank of Golestan province. The main identified factors include open corporate culture, leadership and top management commitment, employee involvement, systemic thinking and information systems infrastructure. Furthermore, Fuzzy AHP model and algorithm, developed by Mikhaylov, were used for ranking the identified factors that provide advantages such as compatibility index, presenting weight vectors usable with incomplete matrices. At the end, some recommendations are proposed based on research findings for successful deployment of knowledge management in Saderat Bank of Golestan province.

Keywords: Knowledge management success, Fuzzy analytical hierarchy process (FAHP), Mikhaylov algorithm.

Introduction

The origin of knowledge management dates back to the past, that is, to the transition from knowledge to technology which happened in industrial revolution. As noted by Druker (1998), knowledge application happened as tools, processes and products as a result of industrial revolution (Druker, 1998). Knowledge management enables people to take informed actions in unknown and unexpected situations. In the current economy, although the companies are careful in acceptance of new technology, they perceive that promoting intellectual assets has the least cost for increasing their competitive power. Knowledge management is a basic element for business strategy in the knowledge-based economy which allows increasing speed of organization for confronting with new challenges and opportunities in the market. It is accomplished through utilization of the most valuable resource, i.e. collective knowledge of performing the work, Ingenuity and experience or the intellectual capital. Knowledge management provides tool for collecting and organizing intellectual capital.

The main purpose of knowledge management application in institutions is rapid adaptation with the environmental changes in order to enhance efficiency and increasing profitability. Thus, knowledge management refers to knowledge creation, dissemination and application process in the organization. In other words, ultimate goal of knowledge management is sharing knowledge among staffs for promoting added value of the existing knowledge in the organization. Knowledge management includes concepts and principles which enhance ability for knowledge application and sharing in the institutions such as expertise, skills and experiences of the staffs and plays critical role in development and improvement of creativity, productivity and profitability (Movahedi & Motamedi, 2009). In such conditions, utilization of knowledge management is highly felt in Iran Saderat Bank following privatization and ownership and organizational structure change, which increased customer and stakeholder expectations. Moreover, its critical and vital role leads to achievement of sustainable competitive advantage. Thus, changing name of education office to knowledge management office in the bank organizational structure denotes intelligence of the management and its necessity and significance for success seeking of the bank. This change in name does not confine merely to appearance in the organizational structure, rather it brings higher mission for the general office of knowledge management and requires interaction and cooperation of all bank staffs including directors, experts, and staffs (Ruhizahraee, 2010).

Knowledge management determines knowledge success in the organization. Analysis of key success factors for knowledge management is an effective tool for identifying main processes guaranteeing knowledge management success. Thus, knowledge management program requires identification of key success factors for achieving optimal performance (Chong & Choi, 2005). Key success factors are factors on which the realization of goals depends. This term is mostly used in strategic planning. Most works in
this area have been done by Rockhar and Danial (Mohamadifateh, 2008). They used CSFs mostly in the area of information systems needed by the top management (Mohamadifateh et al., 2008). Various models have been developed for identification and ranking including Multi Criteria Decision Analysis models such as hierarchical analysis, network analysis and TOPSIS technique. All models have been designed for certain conditions; however, the same as other decision-making conditions, uncertainty might be present. Thus, fuzzy logic based models can be useful in this regard.

Zhen et al. suggested a new plan of knowledge management tool with Network production development (NPD) support for facilitating knowledge sharing and information acquisition among shared group members of NPD. Knowledge management tools generally includes two channels for knowledge acquisition: knowledge research and knowledge recommendation (Zhen et al., 2013). Focusing on quantitative relationship between benefits of productivity, knowledge management, labor time allocation and team size, Xu and Bernard (2013) integrate knowledge management issues with a cooperation model. They found some useful views of model analysis for improving team work performance. In a study entitled, success factor of KM in temporary organizations, Lindner and Wald (2011) concluded that the prevalence of temporary forms of cooperation and project-based working is increasing. IT support and support of formal elements in the organization are cultural factors which are highly influenced by knowledge management success. They are regulated in temporary organization for lack of organizational affairs and memory. Our findings help us in different understanding of knowledge management in the project environment.

Hasanpour et al (2012) conducted a research work in two main phases. In the first phase, 10 main factors and 37 minor factors were identified. In the second phase, in order to determine priority and importance of factors in the view of experts, fuzzy decision matrix was used. Top management support and appropriate knowledge sharing among members were the factors with highest priority and lack of focus and lack of formalization had the least priority. In a study by KuchakSiakhkalesar et al (2012), the result of main hypothesis testing suggests that there is positive significant relationship between organization culture and feasibility of KM deployment. Furthermore, they found there is positive significant relationship between all types of organizational culture (Group culture, particular culture, market culture, hierarchical culture) and feasibility of KM deployment. Results of regression analysis show only special culture in Iranian Gas Transfer Co. can be considered as a predictive and influential culture on KM.

Teymournejad et al (2011) stated inappropriate reward system as the main obstacle for knowledge management deployment. Failure to transfer the experience of experienced people with a high history to the newcomers, fear of failure, lack of mutual trust, difference in expression, management performance and the syndrome of not invented here are other obstacles in terms of significance. Considering priority of the obstacle, organization top management should pay more attention to the reward system and experience transfer from experience staffs. Also, considering findings in this work, they can act for reducing or eliminating obstacles. In order to make decision in uncertainty conditions, understanding its type is necessary. It was believed that uncertainty governing the events results from their accidental aspect and it can be modeled by probability theory; however, fuzzy theory showed that uncertainties do not result from accidental aspect governing the events (Stadler, 2005).

Considering above facts regarding importance of identifying factors affecting success of KM systems, the main problem of this work is identifying and ranking these factors. To this end, the main factors used in this research were taken from the work by Ryan and Prybutok (2001), but their sub-factors were identified and validated within research process. Structure of current research is organized in 5 sections. In section 1, concepts and background and research problem are presented. Section 2 gives principles of AHP model and Mikhaylov algorithm. In section 3, the research method and model structure is described. Section 4 gives research findings and the paper is ended by conclusion and recommendations.

Fuzzy Analytic Hierarchy Process (FAHP)

Analytic Hierarchy Process is widely used in multi-criteria decision-making and it is successfully applied in many academic problems. AHP divides the problem into three phases: 1. Structuring the problem, 2. Evaluation of local weights, 3. Calculating final weight. In AHP, the problem is structured within a hierarchical structure with different levels; each level includes limited number of elements. Relative significance of elements (including weight of factors and rank of alternatives) is obtained indirectly by subjective judgment of decision makers. Despite the popularity and effectiveness of AHP, it is often criticized because of ignoring uncertainty and confidence in subjective perceptions and judgments of decision makers.

In most cases, preferences of decision makers and their subjective judgments have uncertainty and it is difficult to ask them to express their preferences in the form of figures. Decision makers are not able to express their preferences in the form of mere figures because of such reasons as inadequate knowledge and information, complexity of problem, uncertainty about decision environment and lack of proper scale (Micheli, 2008).

Verbal variables

Part of power of fuzzy sets theory against decision-making problems is due to using verbal variables instead of numerical variables for showing concepts. These variables may analyze ambiguity of human speech numerically and quantitatively. Verbal variables are variables that their values are words or statements of the nature language; for example, very low or too old. It is clear that words are not as powerful as figures and values, and thus verbal variables are considered as a way for quantifying human speech and judgments which are complex.

By corresponding them with fuzzy values, it is possible to provide mathematical operations. For example, the terms very low, low, average, high, and very high can be used as verbal statements in a Likert scale (Tavakoli, 2011). In the next steps, it is necessary to correspond each of these statements with a fuzzy value. For example, this correspondence can be established as follows:

522
Table 1. Conversion of verbal statements to fuzzy values.

<table>
<thead>
<tr>
<th>Verbal statements</th>
<th>Fuzzy value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Very low</td>
<td>(1, 2, 3)</td>
</tr>
<tr>
<td>Low</td>
<td>(2, 3, 4)</td>
</tr>
<tr>
<td>Average</td>
<td>(3, 4, 5)</td>
</tr>
<tr>
<td>High</td>
<td>(4, 5, 6)</td>
</tr>
<tr>
<td>Very high</td>
<td>(5, 6, 7)</td>
</tr>
</tbody>
</table>

For making lingual statements as fuzzy, nine-point scale of triangle fuzzy values were used. Its formula is as follows:

\[X = (X - 0.5, X, X + 0.5) \]

So that obvious values are transformed to a triangle, which is its corresponding fuzzy value. Fuzzy theory is a perfect concept for molding uncertainty resulting from subjective phenomena. Human beings and human judgments include a large part of decision making theories data. Thus, logical method for decision making should be able to consider uncertainty related to human judgments instead of merely using probable values. Such attitude to uncertainty of human behaviors leads to a relatively new approach known as fuzzy decision making theory (Kharaman et al., 2006).

Mikhaylov method theory

Various methods have been suggested for obtaining weight of criteria from pair-wise comparison matrix. The method developed by Mikhaylov is one of the newest and most efficient methods, which is described here. Let's suppose that we have a ranking problem with an unknown weight vector of \(W = (w_1, ..., w_n) \) and the decision maker pairwise comparisons are expressed in form of triangular fuzzy numbers \(A = [\tilde{a}_{ij}] \), where \(\tilde{a}_{ij} = (l_{ij}, m_{ij}, u_{ij}) \). Let's suppose decision maker has carried out \(m \) pairwise comparison which is \(m \leq \frac{n(n-1)}{2} \). We convert the way of triangle fuzzy numbers into a real interval by using Alpha-cuts. We have the set of \(F = \{ l_{ij}(\alpha), u_{ij}(\alpha) \} \) at the level of \(\alpha = \alpha \). Thus, we convert the mental judgments of decision makers from triangular fuzzy numbers into real intervals. When the intervals of comparisons are consistent, there are many weight vectors which meet the following inequalities:

\[l_{ij}(\alpha) \leq \frac{w_i}{w_j} \leq u_{ij}(\alpha) \] \hspace{1cm} (1)

When the judgments are inconsistent (4), no vector is true at the above inequality. So, it is logic to find a vector which could meet all inequalities as much as possible. That is to say:

\[l_{ij}(\alpha) \leq \frac{w_i}{w_j} \leq u_{ij}(\alpha) \] \hspace{1cm} (2)

The displaying symbol \(\leq \) is approximately less or equal. The above inequality is equal to the following two fuzzy constraints:

\[w_i - w_j u_{ij}(\alpha) \leq 0, \quad w_j - w_i l_{ij}(\alpha) \leq 0 \] \hspace{1cm} (3)

So, we are facing with \(2m \) of the fuzzy constraints which can be displayed in the following matrix form:

\[\begin{align*}
R_W & \leq 0, \quad R \in \mathbb{R}^{2m \times n} \\
\end{align*} \] \hspace{1cm} (4)

The \(k \)-th row presents the following fuzzy linear constraint which its corresponding membership function can be displayed as below:

\[\mu_k(R_W) = \begin{cases}
1 - \frac{R_w}{d_k} & R_w \leq d_k \\
0 & R_w > d_k
\end{cases} \] \hspace{1cm} (5)

where \(d_k \) is the aspiration level of \(k \)-th constraint. \(\mu_k(R_W) \) is placed as the membership function of \(R_W \) on the following simplex \(\{n-1\} \):
\[Q^{w^*} = \{ w_i, ..., w_j \mid \sum_{i=1}^{n} w_i = 1, w_i > 0 \} \tag{6} \]

Definition 1: The fuzzy feasible area \(P \) on the simplex \(Q^{n+1} \) is a fuzzy set being expressed by the following membership function:

\[
\mu_{\mathbf{w}}(w) = \left\{ \begin{array}{l}
\min \{ \mu_j \left(R_w \right), ..., \mu_j \left(R_w \right) \} \mid w_i + ... + w_i = 1
\end{array} \right. \tag{7} \]

The feasible area \(P \) is defined as the intersection of all fuzzy constraints on the simplex. If the primary intervals are inconsistent, by selecting \(d_i \) large enough, we will be able to get a non-empty feasible area. It is simply possible to show that a non-empty feasible area over simplex \(Q^{n+1} \) is a convex fuzzy set. The convex fuzzy set shows the general satisfaction of a decision maker by the crisp vector of \(W \). So, it will be logical to seek for \(W \) which could maximize the general satisfaction of the decision maker.

Definition 2: The optimal solution is a crisp vector of \(W^* \), such that it is the maximum value of fuzzy feasible area.

\[
\mu_{\mathbf{w}}(w) = \max \left\{ \min \{ \mu_j \left(R_w \right), ..., \mu_j \left(R_w \right) \} \mid w_i + ... + w_i = 1 \right. \tag{8} \]

So, due to the fact that fuzzy feasible area \((P) \) is a convex set and all fuzzy constraints were introduced as the convex sets, constantly, there is one vector of \(W^* \) over \(Q^{n+1} \) simplex. It is such that it has the maximization of quantity in over \(P \). The max-min operator was presented by Bellman and Zadeh to get a maximization solution for decision making in a condition which constraints and functions are fuzzy (Tavakol, 2011). By introducing the new variable of \(\lambda \) which is the gauge of the degree of vector membership of \(W^* \) in \(P \) it will be possible to present the following crisp linear programming model to get the vector of optimal weights:

\[
\text{Max } \lambda
\]

\[\text{subj to: } d_i \lambda + R_i \leq d_i \]

\[\sum_{i=1}^{n} w_i = 1, w_i > 0 \quad i = 1, ..., n; k = 1, 2, ..., m \]

The optimal solution of the above linear programming model is the vector \((W^*, \lambda^*)\). Where \(W^* \) indicates the weights vector which has the maximum value in the feasible area and \(\lambda^* \) indicate the degree of the membership function of \(W^* \). \(\lambda^* = \mu_{\mathbf{w}}(W^*) \) shows the degree of satisfaction of the decision maker by \(W^* \). So, it can be used as an appropriate index to measure the consistency of judgments. Mikhailov has stated that \(\lambda \geq 1 \) shows the consistency of comparisons, because a quantity bigger than one shows that all comparisons are within the intervals obtained from Alpha-cuts and the vector of the identified weight is fully consistent.

Methodology and AHP Model Structure

This research is applied one in terms of purpose and it is of descriptive survey type in terms of data collection. Decision team includes directors, deputies and experts of Golestan Saderat Bank supervision \((n = 16)\). In order to identify and rank key factors, following steps were designed and implemented.

Step 1: Identification of key success factors for knowledge management

One of the basic goals of this research is identifying factors affecting success of knowledge management. To this end, these factors were identified by integration of library and field methods. First, a list of these factors was prepared by review of related literature. These factors are given in table 2.

<table>
<thead>
<tr>
<th>Author</th>
<th>Key success factors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moffett et al (2003)</td>
<td>Friendly organizational culture, top management leadership and commitment, involvement of staffs, staff training, reliable teamwork, staff authority, information systems infrastructures, performance measurement, modeling, knowledge structure</td>
</tr>
<tr>
<td>O'Dell et al (2003)</td>
<td>Performance subject, culture, structure, roles and responsibilities, IT, approaches and measurement</td>
</tr>
</tbody>
</table>

However, considering case study in Saderat Bank supervision in Golestan province, relative validity of the factors related to the research population should be identified using a proper field research method. To this end, decision team was composed of 5
directors, 5 deputies and 6 experts. Then, using semi-structured questionnaires they were asked to express their ideas about adding new criteria, elimination of previous criteria and strength coefficient. The criteria were finalized by integrating ideas of decision team and a hierarchy was obtained according to the diagram. Main criteria of the research included open corporate culture, leadership and top management commitment, employee involvement, systems thinking and information systems infrastructure. Sub criteria related to each of these factors were obtained considering reviewed literature and ideas of decision team.

Step 2: Ranking criteria and sub-criteria of key success factors in KM deployment

In order to rank and weight the criteria, standard questionnaires of fuzzy pairwise comparisons were designed considering research’s hierarchical structure. Then, given the described algorithm in section 2, final weight of the research criteria and sub-criteria was obtained according to table 3.

Figure 1. Hierarchical structure diagram.

Results

Considering above table, weights of main criteria were obtained and the rank was considered for each criterion considering calculated weight. The rank shows priority of the main criterion over other main criteria in the research. Priority of main factors affecting KM success in supervision of Saderat Bank in Golestan province was obtained as follows: system thinking, information systems infrastructure, top management leadership and commitment, open corporate culture, employee involvement, as 0.3020, 0.2571, 0.2550, 0.1195, 0.0664, in priority 1 to 5.
Four sub-criteria were finalized for the main criteria as follows:

Organizational culture (A): support and motivating creative thinking (A1), creating free flow of information, knowledge and ideas (A2), formation of meetings without governance of one single person and free discussion with participation of all staffs (A3), not confining communications to team, sector and even organizational boundaries (A4). Top management leadership and commitment (B): management support in financial, personnel and technical resources fields (B1), creating adequate educational opportunities and incentive systems by management for staffs (B2), presence of informed leadership in the organization (B3), support and encouragement of top management from creative ideas of staffs (B4). Employee involvement (C): evaluation and encouragement of staffs considering their contribution in organizational development (C1), easy access of staffs to experts and utilization of their knowledge (C2), valuing time and power of staffs (C3), giving authority and action freedom to staffs in determining necessary activities for performing their occupational tasks (C4). Systems thinking (D): collecting and organizing knowledge of organization (D1), utilizing and protecting knowledge capitals (D2), coordination between work flow in the organization with other processes of the organization (D3), paying attention to resources out of organization in addition to the knowledge in the organization (D4). Information systems infrastructures (E): integration in designing and application of different systems in an organization (E1), ability to maneuver in the future (E2), considering general conditions and strategy of organization (E3), simultaneous use of human, technical and information infrastructures (E4).

In the minor question, priority of research sub-criteria is evaluated. Weights of sub-criteria were calculated considering table 4. A rank was considered for each sub-criterion considering the calculated weight. The rank shows priority of the sub-criterion over other sub-criteria. Priority of sub-criteria affecting KM success in Golestan province’s Saderat Bank is given in table 6. Sub-criteria E3, B3, A3 and C2 with weights 0.398, 0.397, 0.358 and 0.318 were in ranks 1 to 4. Sub-criteria C1 was in rank 17 and sub-criteria A4, B1, and E2 were in ranks 18, 19 and 20. Since final weights of sub-criteria (adjusted weight versus the weight of main group) is important in AHP for ranking, it is observed sub-criterion E3 (considering general conditions and strategy of organization) belongs to the main group of information systems infrastructure with highest relative importance and first rank.

<table>
<thead>
<tr>
<th>Main factors</th>
<th>The weight of main factors</th>
<th>Secondary factors</th>
<th>Final weight</th>
<th>Rank in group</th>
<th>General rank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reorganizing culture</td>
<td>0.1195</td>
<td>A1 Support and encouragement of creative thinking</td>
<td>0.244</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A2 Making free flow of information, knowledge and ideas</td>
<td>0.212</td>
<td>3</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A3 Formation of meeting without governance of one individual</td>
<td>0.358</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>A4 Not limiting communication</td>
<td>0.184</td>
<td>4</td>
<td>18</td>
</tr>
<tr>
<td>Leadership and high managerial commitment</td>
<td>0.255</td>
<td>B1 Managerial support from financial, personnel and technical resources</td>
<td>0.144</td>
<td>4</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B2 Making educational opportunities</td>
<td>0.246</td>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B3 The presence of effective leadership in organization</td>
<td>0.397</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>B4 Encouraging and support of managers in presenting creative opinions of employees</td>
<td>0.211</td>
<td>3</td>
<td>15</td>
</tr>
<tr>
<td>Employees’ involvement</td>
<td>0.0664</td>
<td>C1 Evaluation and encouragement of employees</td>
<td>0.205</td>
<td>4</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C2 Easy access of employees to experts</td>
<td>0.318</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C3 Validating employees’ time and force</td>
<td>0.226</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td></td>
<td>C4 Giving the choice right to employees</td>
<td>0.250</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Systemic thinking</td>
<td>0.3020</td>
<td>D1 Collecting and organizing organizational knowledge</td>
<td>0.296</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D2 Utilization and protection of knowledge capital</td>
<td>0.254</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D3 Coordination between working flow and organizational processes</td>
<td>0.243</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>D4 Consideration of the external sources of organization</td>
<td>0.204</td>
<td>4</td>
<td>16</td>
</tr>
<tr>
<td>Information systems infrastructure</td>
<td>0.2571</td>
<td>E1 Integration in design</td>
<td>0.226</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E2 The ability for future maneuver</td>
<td>0.115</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E3 Consideration of general condition and organization strategy</td>
<td>0.397</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>E4 Simultaneous use of human, technical and information infrastructure</td>
<td>0.264</td>
<td>2</td>
<td>6</td>
</tr>
</tbody>
</table>

Discussion and Conclusion

Considering research findings and systems thinking as the main criteria in the first priority, it is clear it is the main criterion among other criterion and it has higher important. Need of the organization (Saderat Bank of Golestan province) for successful deployment of KM would be improved by eliminating problems and deficiencies in systems thinking and significant progress in
successful KM deployment will be observed for improvement of the organization. Information systems infrastructure is in the second priority. From the beginning of the project, organization should implement infrastructures under powerful and skilled team and design comprehensive and basic database so that it does not face infrastructure problems in long-term, since information systems infrastructure is a novel issue in today organizations and they are crucial.

Top management leadership and commitment is in the third priority. Respective organization should attempt to train leaders which are eager for KM deployment so as to continuity and facilitate knowledge management. The management should be committed to the project and try for facilitating KM deployment process. Open corporate culture is in the fourth priority. As it is known, if all facilities necessary for deployment a new plan in the organization are provided, the plan would not be implemented if its culture is not implemented and considered in the organization, and only human and financial losses will be brought. Thus, culture of using new technology and plan such as deployment of knowledge management should be trained and considered from the beginning along with preliminary works of KM deployment such as infrastructure works.

Employee involvement is in the fifth priority. The staffs are the main and critical members of the organization. Their absence or lack of performing vital tasks of the organization by them would fail the organization in implementing the project. Hence, staffs should be involved in KM deployment by training, informing, rewarding, resource allocation and etc. necessary awareness should be provided for the staffs and they should be informed about optimal outcomes of KM implementation, which would be in favor of both them and organization, so that they step for KM implementation eagerly. Considering general conditions and strategy, mission, and ideal of the organization as the prioritized sub-criteria should be taken into account. In addition, presence of influential leadership in the organization for progress of organizational goals as well as holding meetings with participation of organization members will be useful in establishment of KM successfully. Easy access of staffs to experts and consulting with them as well as providing expert experiences for the organization members are main factors which in high priority.

Finally, it should be noted perhaps five main criteria and sub-criteria are in different levels of priority, but it should be mentioned this prioritization does not mean weakening role of criteria an sub-criteria with lower priority, because each of five main criteria and 20 sub-criteria are necessary and absence of each of them would fail organization in reaching its goal, i.e. successful knowledge management deployment.

References

